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Challenges:  Cold Cathode Technology

Innovative Cold Electron Sources Must Be Developed That Provide:

• High current density J
• Uniform emission
• Robust emission
• Low voltage operation
• Emission modulation

High-performance Cold Cathodes Are Needed to Enable
Next-generation Vacuum Electron Devices with:

• Higher power
• More compact size
• Increased efficiency
• Longer life



Emission Process in Cathode Materials
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Metal Semiconductor or Insulator

Emission Process
• Escape across

surface barrier
• Electron supply

mechanism

  Material Emission type Surface barrier Electron supply

    metal thermionic φ conduction e-s
field emission tunneling conduction e-s

non-metal field emission tunneling valence e-s
cold (low field) χ conduction e-s

⇒ need low or negative electron affinity (NEA)

(electron affinity)(work function)



Wide Bandgap Materials

Materials

Diamond Egap = 5.5 eV
AlxGa1-xN 3.4 ≤ Egap ≤ 6.2 eV
(0 ≤ x ≤ 1)

NEA Surface Properties

Diamond  χ < 0
AlxGa1-xN  χ < 0  for x > 0.75

Electron Transport Properties

• High current density:   J ~ 103 - 105 A/cm2

• High electron mobilities: µ ~ 1600 cm2/V-s (diamond)
   ~ 1200 cm2/V-s (GaN)

• High breakdown fields: E ~ 8 x 106 V/cm (diamond)
   ~ 3 x 106 V/cm (GaN)
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Opportunities in Cold Cathode Development

Materials

Wide Bandap Materials: Diamond, III-Nitrides

→ high-electron-density transport 

→ small or negligible surface barrier

Growth / Fabrication Capabilities

• Molecular Beam Epitaxy (MBE)
• Chemical Vapor Deposition (CVD)
• Doping Control
• Heterostructures and Multi-layer structures



Cold Emission Process

The development of wide bandgap cold emitter materials must
address the 3 steps involved in the emission process:

Injection: Develop injection mechanism to maintain electron supply 
in conduction band 

Transport:   Determine influence of material properties on the intensity
and energy distribution of transmitted electrons

Emission: Identify stable low or negative electron affinity surfaces
and characterize emitted electron distribution

Injection Transport Emission



Approach:  Cold Cathode Development

1) Evaluate Transport and Emission Processes 

If electrons are present in the conduction band:

• How efficient is emission at NEA surface?

• What are the electron emission characteristics?

• How do the bulk and surface properties affect the emission?

2) Develop Cathode Structures to Supply Conduction Electrons

• How are electrons injected into the conduction band?

• How is electron supply maintained?



Studies: Surface and Transport Properties

Surface Studies (Diamond: B. Pate-WSU, R. Nemanich-NCSU, J. Robertson-Cambridge, )
(III-Nitride: A. Kahn-Princeton, R. Nemanich-NCSU, V. Bermudez-NRL, )

material χ (eV) stability

bare C ~0.5 heat to T > 1000 °C to clean
H/C - (1.0-2.0) stable to T ~ 1000°C

Bare GaN +3.3 N-sputter & anneal (1100°C) to clean
Bare AlN < 0 to +1.9 very reactive
Cs -0.7 ?

Electronic Studies  (P. Cutler-PSU, P. Mumford-AF-WL, )

Diamond: Ballistic electron transport through conduction band
Transport through defect states or bands also possible

III-Nitrides: Ballistic transport through conduction band

{



NRL Studies:  Transport and Emission
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TRANSPORT EMISSION

• Injection of high-energy electrons into material using e- gun

• Transport and Emission of low-energy electrons at NEA surface

• Measurements: Energy distribution curves
Secondary yield curves

Techniques
• Secondary electron emission spectroscopy
• Transmission electron spectroscopy



Secondary Emission Process In Wide Bandgap Material

Generation of secondary electrons Transport to and emission at surface

Penetration Depth Increases   Transport Process

 ⇓ ⇓
Generation Depth Increases Inelastic Scattering → Energy Loss
Generated Current Increases Recombination/Traps → Intensity Loss

As Eo Increases: 

scattering recombination

e- traps

Is , N(Es)

secondary electrons

 primary
electrons

x = 0

Igen ∝ Eo

Io , Eo

x = Dp



Low-Energy Electron Emission From Diamond
.

Emission Model
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• Emitted energy distribution is sensitive to χ
• Electron distribution dominated by low-energy electrons

⇒  FWHM ~ 0.5 eV, <KE> ~ 0.5 eV

Internal
  N(E)

Cold  low-e nergy electrons are emitted efficiently at NEA surface 



Efficient Transport of Low-Energy Electrons in Diamond

Low-energy electrons have long escape depths in diamond samples

δ ∝ Eo 

NEA C(100)

NEA C(111)

NEA CVD
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• Extremely high yields

→ δ ~ 90 - 130 !!

• δ increases with increasing Eo

    ⇒ Desc >>  0.13 µm

• Secondary yield calculations:*

 ⇒ Desc ~  1 - 5 µm

* Martinelli and Fisher, Proc. IEEE 62, 1339 (1974)

⇒  Examine transport process more directly in transmission studies

δ = Is/Io



Thickness B-doping
1 - 10 µm low → high

• Determine effect of
dopants on transport

• Determine escape depth
of secondary electrons

Electron Transmission Studies

Experimental Approach

CVD diamond film on Si substrate*
⇒ Si etched to create diamond window

 0- 20 keV
e- gun

transmitted
electrons
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Emitted Electron Intensity

Reflected: H/C(100) (E=1400 eV)

Transmitted: H/CVD (E=18 keV)

Initial Studies
Energy distribution is nearly identical in
reflection and transmission measurements

⇒ Need to understand factors that limit
transmitted current

* J. Butler and P. Pehrsson, NRL



Approach:  Cold Cathode Development

1. Evaluate Transport and Emission Processes 

• Low-energy electrons are emitted very efficiently at NEA surfaces

• Energy distribution is sharply peaked at very low KE 

• Low-energy electrons have long escape depths in diamond

→ Influence of  bulk properties is under investigation

→ Emission at III-nitride surfaces is under investigation 

2. Develop Cathode Structures to Supply Conduction Electrons

• How are electrons injected into the conduction band?

• How is electron supply maintained?

Various Injection Models Under Theoretical & Experimental Investigation



Internal Field Emission Model in Diamond

Transport Under Applied Field
model 1:  electrons tunnel through to conduction band  (M. Geis, MIT-LL)

model 2:  electrons hop through gap via impurity or defect levels (A. Gohl)

Main Barrier to Emission Is at Back Contact

φ

metal diamond vacuum

++
+

+

+

model 1 model 2

conduction band

valence band

Approach: Dope with N impurities (deep donor levels)
→ Depletion layer created at back contact that produces 

band bending and narrowing of the barrier



Resonant Tunneling Diode (RTD) Emitter

Tunneling Transport Characteristics

• narrow energy distribution
• narrow momentum distribution
• Jmax ~ 300 kA/cm2 (reported for InAs/AlSb) 

Predicted Emission Characteristics

• monoenergetic beam
• highly-collimated beam
• beam modulated by V 

Key Issues
• Current density through AlGaN RTD
• Effect of impurities and defects
• Small surface barrier

AlN AlN
GaN

emitter
GaN

collector

V

RTD*

*S. Krishnamurthy, SRI International

Vacuum

AlNGaN

RTD based on AlN/GaN/AlN quantum well



Photo-injection Mechanism
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Impacting photons
hν > Egap

TRANSPORT EMISSION

III-Nitrides are direct bandgap materials  ⇒  Opto-Electronic Devices

Advantages of external photon source
• Emitter structure is less complex, easier to optimize
• Laser provides injection and modulation capabilities

Disadvantages of external photon source
• Cathode-laser system is cumbersome
• Higher input power demands 

Internal photon source possible ⇒  Complex heterostructure design



Status:  Wide Bandgap Emitter Materials

Diamond: Material Challenges

• n-type doping - shallow donor
→ Reduced Schottky barriers or ohmic back contacts

• Reproducible high-quality CVD diamond growth

III-Nitrides: Material Challenges

• Surface preparation for low or negative χ
→ Investigate electronic structure of AlN and AlGaN alloy surfaces 

prepared under various conditions 

• Reduce defects/dislocations
→ Study scattering mechanisms and transport in specific materials and

device structures

• Improved control of doping (p-type, n-type contaminants)

Material Issues  ⇒  Key to Successful Cold Cathode Development



Novel Emitter Materials

Other Carbon Materials: Diamond-like Carbon
Nano-crystalline Diamond
Carbon Nanotubes

  √ Harsher growth conditions are allowed
  √ Cheaper fabrication processes can be used 
  √ Novel materials are produced

But ... material properties may not be well understood
→ Emission model?
→ Uniformity?
→ Reproducibility?



Amorphous and Nano-Crystalline Carbon

Diamond-like Carbon (DLC)
Amorphous semiconductor with sp3 (diamond) and sp2 (graphite) bonds
Egap ~ 1 - 4 eV  (χ ↓ as Egap ↑); φ ~ 3.5 - 4.0 eV 
High density of defects

Nano-grained CVD Diamond
Nano-crystalline grains ~ 50-100 nm
High density of conducting grain boundaries
Graphitic phase at boundaries with φ = 4.7 eV

Very high fields can be created at C surfaces due to:
• nm-size surface regions with different termination ⇒  High local fields
• High defect density causes short depletion width ⇒  High near-surface fields
• High breakdown fields in diamond-like material

Main Emission Barrier Is at Front Surface → Need to Tunnel Across Barrier

DLC:  Dope with N (shallow donor) to decrease φ; increase sp3 content to decrease χ 
CVD:  Field enhancement at conducting grain boundaries, surface roughness



Carbon Nanotubes

Nanotubes:  sp2-bonded rolls of graphite
• Similar electronic structure to DLC
• High-density arrays of aligned nanotubes

Field Emission Studies  (W. Zhu, Lucent)

Best emission from single-walled nanotubes (swnt)
Jmax ~ 1 - 5 A/cm2

Emission site density ~ 104 cm-2

Cathode Issues
• Emission due to small tube size

⇒ Characterize emission as function of tube size
⇒ Determine optimum array structure

• Low adsorbate sensitivity
⇒ Determine effect of tube size, structure on reactivity

• Extremely rigid, strong and possibly self-healing
⇒ Determine robustness in sputtering environment

swnt diam.
  ~ 1-5 nm



Future Prospects for Cathode Development 

Near-term Prospects

Improvements in the quality and control of wide bandgap materials
will enable the development of high-performance cold cathodes for
specific device applications and operating environments

Long-term Prospects

Potential for new classes of materials, new structures, and new
emission mechanisms

Steady advances in materials growth, fabrication, and design
are expected due to:

• powerful new characterization tools
• precision instrumentation for controlled growth 
• deeper understanding of material properties


